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Abstract—In environments requiring remote monitoring, 

distance between microcontrollers and sensors leads to noisy 
measurements, particularly mains power noise. Noise mitigation 
in DC measurements can be achieved through digital low-pass 
filtering at code level. Design and performance of such filters 
depends of parameters such as sampling frequency, precision, and 
available memory, meaning the Arduino has specific design 
constraints. Specifications of clock speed, floating point precision 
and memory were determined, allowing the design of recursive 
filters based on analog parallels. High order filters were deemed 
unrealizable at low cut-off frequencies due to precision, whereas 
fewer poles required excessive memory, due to which designers 
must determine allowed variations and memory parameters 
during implementation. The procedure followed can be 
generalized to different frequency, response, precision and 
memory constraints. 

Keywords— Arduino Mega 2560, Digital Filter, Recurrence 
Coefficients, Sampling Frequency, Floating Point Precision, 
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I. INTRODUCTION 
Remote monitoring may be a necessity in environments 

where limited access to microcontrollers requires the definition 
of a reduced amount of control units, such as hobbyist projects. 
In these cases, the distance between the microcontroller and the 
measurement point has an impact on the measurements when 
covering the span with electrical conductors. The conductor 
length increases susceptibility to noise, particularly to the 
ubiquitous mains power noise. The result is a superposition of 
the desired signal with AC components of varied frequencies. 
This compels designers to implement filters; however, the signal 
under measurement may have a frequency similar to that of the 
noise source, meaning that filtering must be implemented 
through software in order to mitigate noise selectively. This 
introduces new constraints that depend on the microcontroller 
involved in the system. 

A particular case is that of the Arduino Mega 2560, which 
allows interaction with an ATmega2560 microcontroller 
through a proprietary interactive development environment and 
C++ coding [1]. When dealing with analog DC measurements, 
signal filtering can be achieved through digital low-pass filters 
at code level by processing discrete data values collected by the 
microprocessor. Such filters can be designed through different 
methods, one of which parts from analog circuitry with desirable 

properties. The filtering process is then limited by the clock 
speed, precision, and memory specifications of the onboard 
processor, providing specific parameters for digital filter design 
involving the Arduino Mega 2560. 

II. OBJECTIVES 

A. General Objective 
• To study the realizability of analog-based digital low-pass 

filters intended for mains noise mitigation in the Arduino Mega 
2560 

B. Specific Objectives 
• To determine the design constraints involved in filter design 

for the Arduino Mega 2560 

• To compare the results of different order and cut-off 
frequency filters in terms of required memory and output 
variations 

• To provide a replicable and modifiable procedure for 
designing and evaluating low-pass digital filters 

III. METHODOLOGY 
Measurements were taken using: Arduino Mega 2560 

(henceforth, Arduino), PCE-SDS1022DL Oscilloscope, 
N1996A Spectrum Analyzer, 1µF Capacitors. The experimental 
setup was carried out at the “Universidad Tecnológica 
Centroamericana” (UNITEC) Networks Lab, consisting of a 
75.6 m unshielded twisted pair cable with 14 connector-socket 
pairs folded into 2 loops, interconnecting the Arduino and a 
sensor with an output of voltage of 0.21 V. The setup is show in 
Fig. 1. Calculations and preliminary simulations were carried 
out in Matlab. 

The sampling period of the Arduino was determined 
theoretically by studying the ATmega2560 manual, and 
corroborated through benchmarks found in the Arduino forums. 
For the specific Arduino used, the mean sampling period was 
determined. To reduce probe effect introduced by code 
commands other than sampling, a single sample was defined as 
the time taken to measure 960 values. A pilot test of 100 such 
samples yielded a standard deviation of 0.009 ms. 

 



 

 
Fig. 1. Experimental Setup in Networks Lab caption 

Choosing a margin of error of 0.001 ms, the mean sampling 
period was determined with 99% certainty. 

Digital filter design was centered on the calculation of 
recurrence coefficients. The process involved analog filter 
design through Laplace transform, inverse Laplace transform to 
obtain the time domain transfer function, discretization of the 
time domain based on sampling period, Z transform and gain 
normalization. Subsequently, the resulting filters were simulated 
on a sample noisy signal prior to implementation in the 
experimental setup. 

IV. DESCRIPTION 
When measuring analog DC signals with the Arduino, the 

goal is to obtain significant information from the values 
collected. This becomes difficult when noise comes into play, as 
is the case of sensors connected to a microcontroller by means 
of a span of conductor. A setup consisting of a 75.6 m unshielded 
twisted pair connecting an Arduino and a sensor with a 0.21 V 
allows the measurement of the superposed noise signal. A noise 
of 30 mV peak maximum is present in the experimental setup, 
representing an error of ± 14% in the measurement. By 
inspection, the shape of the noise follows that of a 60 Hz 
sinusoid, as expected from the spectrum analyzer output of -10 
dBm at 60 Hz in the Networks Lab, as shown in Fig. 2. The 
information of interest can be obtained through filtering. 

 
Fig. 2. Experimental Setup in Networks Lab caption 

 

The sampling theorem states that the maximum frequency 
that can be unambiguously characterized based on the sampled 
values of a signal depends on the sampling frequency used [2]. 
For the Arduino, the sampling frequency is dictated by a 
prescalar in the Analog to Digital Converter (ADC) in the 
ATmega2560 with a default value of 128 [3]. The ADC is 
specified to take 13 clock cycles for successive approximation 
in the default single conversion mode, plus a minimum of 1 
clock cycle before commencing the next measurement [3]. From 
[1], [2], and [3], the Arduino follows that 

 . (1) 
 
 From (1), the Arduino sampling frequency is approximately 
8929 Hz, characterizing signals up to a maximum frequency 𝑓𝑚  
of approximately 4465 Hz. This corresponds to the findings in 
[4], where the sampling period is measured as 112.01 µs. For 
the particular Arduino used, the mean period for measuring 960 
samples is 107.528 ms with 99% certainty, equivalent to 8928 
Hz with an error of 0.011% with respect to the theoretical value, 
due to which a frequency of 8929 Hz is used. 

 With (1) in mind, a 1µF capacitor is placed parallel to the 
ADC input. This value is determined by defining the desired 
reactance at the frequency of interest; in this case, finding the 
capacitor that provides a reactance with a magnitude close to 30 
Ω at 4465 Hz, decoupling signals at this frequency and higher, 
which satisfies (1) and attenuates other AC signals under 
4465Hz. Samples collected by the Arduino at this point 
represent an unambiguous signal that can be treated with digital 
filters. 

 Digital filters can be implemented by programming their 
characteristic difference equation [5]: 

  (2) 

 
 Values 𝑎𝑖  and 𝑏𝑗  are the recurrence coefficients of the 
filter, assigning a weight to the components 𝑥[𝑛 − 𝑖] and 𝑦[𝑛 −
𝑗] , which represent the value of the input and output, 
respectively, 𝑖  and 𝑗 samples ago, where 𝑖 = 0,1,2, … and 𝑗 =
1,2,3, … . This equation accounts only for current and past 
values of 𝑥[𝑛] and 𝑦[𝑛], due to which filters of this form are 
causal and physically realizable [2]. Design of causal filters 
revolves around the calculation of adequate coefficients, 
producing a desired behavior when applied to a discrete time 
signal, such as ADC measurements in the Arduino. 

Recurrence coefficients can be taken from the z transform of 
the filter’s transfer function, which is equivalent to taking the z 
transform of both sides of (2) and solving for the transformed 
output divided by the transformed input [5]: 

 

 

  (3) 

 

 

-60
-30

0
30
60

0.00 2.00 4.00 6.00 8.00 10.00

m
V

ms

-100

-75

-50

-25

0

0 60 120 180 240 300 360

dB
m

Hz



 

In (3), 𝑌[𝑧] and 𝑋[𝑧] are the respective z transforms of the 
input and output, and coefficients 𝑎𝑖  and 𝑏𝑗  are the same 
recurrence coefficients as in (2). Since (2) and (3) are causal, a 
physical filter can be made to have the same transfer 
function 𝐻[𝑧] = 𝑌[𝑧]

𝑋[𝑧]. This transfer function can be obtained by 
taking the Laplace transform of a time domain transfer function 
ℎ(𝑡) after it has been sampled, represented by ℎ∗(𝑡), yielding 
𝐻∗(𝑠)  [2]. The transfer function 𝐻[𝑧]  can be obtained from 
𝐻∗(𝑠)  through the substitution 𝑧 = 𝑒𝑠𝑇  [2] with prior 
knowledge of sampling period 𝑇. 

A continuous system can be analyzed through the Laplace 
transform to obtain a transfer function 𝐻(𝑠)  and a 
corresponding  ℎ(𝑡) . This time domain function can be 
discretized by taking samples every 𝑇  seconds, from which 
ℎ∗(𝑡)  and 𝐻[𝑧]  can be found. This procedure allows the 
calculation of recurrence coefficients so that (2) is a discrete 
representation of a system with transfer function 𝐻(𝑠), shifting 
the focus onto common analog filters. 

 It is desired that the output of the filter remains the same as 
the input for the frequency band of interest; in this case, 
frequencies under 60 Hz. A Butterworth response filter achieves 
a maximally flat gain below the cut-off frequency [6], solving 
the problem by using a unit gain; additionally, the topologies 
selected as a basis for 𝐻(𝑠) are a simple RC combination for one 
pole, a Sallen-Key topology for two poles, and a cascaded 
combination of both for 3 poles, finding the appropriate gain 
value for the two pole Sallen-Key Butterworth response in [6]. 
Transfer functions 𝐻(𝑠) for these low-pass analog filters are 
found to be:  

 (4) 

 (5) 

 (6) 

 (7) 

 
In these equations, index n in 𝐻𝑛(𝑠) denotes the number of 

poles in the filter. This representation was derived with 
simplicity of input into mathematical software in mind. The 
symbol 𝛽 substitutes the product RC as the specific component 
values are unimportant; rather, filter cut-off frequency 𝐹𝑐  is 
emphasized.  

Though any 1, 2 or 3 pole low-pass filter may be designed 
through (4-7), care must be taken to ensure that 𝐹𝑐 < 4465 𝐻𝑧, 
limit imposed by the Arduino’s default characteristics following 
from (1). Sampling period 𝑇 must be fixed to 8929−1 s when 
discretizing the continuous time transfer function ℎ(𝑡) obtained 
from 𝐻(𝑠).  

𝐻[𝑧]  may be obtained by successive transformations 
following the sequence  𝐻(𝑠) → ℎ(𝑡) → ℎ∗(𝑡) → 𝐻[𝑧]  , or 
directly 𝐻(𝑠) → 𝐻[𝑧]  through software aid or by use of 
transform tables. Once 𝐻[𝑧] is obtained, a few modifications 
must be made. In order for the expression to match (3), the 
numerator and denominator must be divided by the highest 
power of the 𝑧  variable to produce negative exponents; they 

must also be divided by the constant value in the denominator to 
ensure a leading value of 1 followed by negative exponents of 𝑧.  

The expected output of a recurrent filter built from (3) and 
(2) should be equal to the input when the frequency is within the 
range of interest. To ensure this, the filter’s gain must be 
normalized. This procedure can be done by taking the 
preliminary expression of the recurrent filter of form (2) and 
enforcing 𝑥[𝑛 − 𝑖] = 1,  𝑦[𝑛 − 𝑗] = 𝐺, and 𝑦[𝑛] = 𝐺, and then 
solving for 𝐺, where 𝐺 is the filter’s gain [5]. If 𝐺 ≠ 1, then 𝑎𝑖 
must be substituted by 𝑎𝑖

𝐺
 [5]. Alternatively, to test whether the 

filter is normalized, assume all inputs and outputs equal to 1. If 
(2) holds true under this assumption, the filter is normalized; 
otherwise, the previous procedure must be carried out. 

Recursive filters intended for implementation on the 
Arduino have constraints other than sampling frequency. The 
floating point precision in Arduino uses 4 bytes (henceforth B) 
and allows for up to 7 digits aside from exponents [7]. The 
limitation comes from the lack of double precision variables, 
meaning that variables declared as doubles have the same 
characteristics as floats [8]. Filters with certain coefficient 
combinations are subject to rounding error when coded into the 
Arduino, whereas environments with higher precision will only 
experience this in more extreme cases. 

The final limitation present in the Arduino environment is 
memory. Arduino boards using the ATmega2560 have 8 kB of 
SRAM memory for variable storage [9]. A maximum of 4000 
integers may be stored at a time, based on their size [10]; this 
scenario is not realistic as other variables must be stored in usual 
codes, limiting the available memory further. Recurrent filters 
require different amounts of samples to settle into a steady state. 
To reduce jitter and deviation from the mean clock speed of the 
microcontroller, all samples should be taken consecutively and 
stored prior to application of the filter, and because of this, filters 
requiring large amounts of samples to reach their final state are 
not realizable in the Arduino.  

V. RESULTS 
Fixing  𝑇 = 8929−1  s and using (4-7) along with 

consecutive transformations  𝐻(𝑠) → ℎ(𝑡) → ℎ∗(𝑡) → 𝐻[𝑧] , 
recurrence coefficients were calculated for filters of first, 
second and third order, with cut-off frequencies of 1 Hz, 10 Hz, 
20 Hz, 30 Hz and 40 Hz. Many of these filters were determined 
to be unrealizable in the Arduino mainly due to floating point 
precision. Coefficients for realizable filters are shown in Table 
I rounded to 6 decimal places; an explanation for this rounding 
is provided below. Notation xi and yj in Table I corresponds to 
𝑥[𝑛 − 𝑖] and 𝑦[𝑛 − 𝑗]. 

To determine whether a filter can be realized or not in the 
Arduino, the order of the coefficients must be examined. As 
only 7 digits are allowed, coefficients that differ in magnitude 
by several powers of 10 will be rounded to 0. The following 
criterion can be used to evaluate the low-pass filters found: 

 

 (8) 

 



 

TABLE I.  RECURRENCE COEFFICIENTS 

Cut-off 
Frequency 1 Pole 2 Poles 3 Poles 

1 Hz 0.000703*x+0.999297*y1 NA NA 
10 Hz 0.007012*x+0.992988*y1 0.000049*x1+1.99005*y1-0.990099*y2 NA 
20 Hz 0.013975*x+0.986025*y1 0.000197*x1+1.980100*y1-0.980297*y2 NA 
30 Hz 0.020889*x+0.979111*y1 0.000439*x1+1.970152*y1-0.970591*y2 NA 

40 Hz 0.027755*x+0.972245*y1 0.000776*x1+1.960205*y1-0.960981*y2 0.000011*x1+0.000011*x2+2.93245*y1-
2.866781*y2+0.934309*y3 

 

 In (8), 𝑏𝑚  is the recurrence coefficient with the largest 
magnitude in the denominator of 𝐻[𝑧]. When (8) is satisfied, all 
numerator coefficients will round to 0 and the filter cannot be 
realized on Arduino. If the result is exactly equal to 7, care must 
be taken to see whether the coefficients will round up or down. 
When the result is less than 7, recurrence coefficients will be 
nonzero, but normalization testing is necessary. 

 The third order filter with cut-off frequency of 30 Hz is a 
case of an unrealizable filter due to normalization. The 
expression for the filter is: 
 
 (9) 

 Repeated attempts at normalization yield 1 ≠ 1.000001 
and 1 ≠ 0.999999, oscillating about 1. This alters the output 
by multiplying a gain different from 1, making it unrealizable 
in Arduino. A special case can be made for modifying the 
coefficients of 𝑥[𝑛 − 𝑖] arbitrarily to obtain a sum of 1, though 
this would require analysis of the frequency response for any 
modifications in the cut-off frequency of the filter. 

 Implementation of filters in Table I yielded the results in 
Fig. 3-5. There is a tradeoff between performance and order of 
poles. Filters with more poles reach a steady output in fewer 
samples and therefore require less memory; however, as shown 
in Table I, more poles leads to smaller recurrence coefficients 
in the numerator of  𝐻[𝑧] . The size of these coefficients 
increases with the cut-off frequency, so higher order filters are 
realizable at higher cut-off frequencies. Resulting oscillations 
are not evident in Fig. 3-5, due to which simulation with noisy 
signals is advised. The utility of a bypass capacitor to limit the 
frequency of signals prior to sampling is shown in Fig. 5. 

 
Fig. 3. First order filter output 

 The suggested implementation of these filters is iterative 
rather than recursive. The motivation is that recursion elicits 
greater memory usage by creating copies of variables involved 
in calculations; in contrast, iterative implementations can be 
realized by means of a single swap variable. In the case of the 
analog-based low-pass filters discussed, a loose upper bound 
for realization can be found based on filters requiring the fewest 
variables, corresponding to first order. These filters require 2 
recurrence coefficients, the present input, a previous output, 
and a number of input samples to be cycled through in order to 
obtain a steady output. All input measurements are stored first 
as integers and are casted to floats during application, meaning 
that an array of integer inputs is needed along with 5 floats for 
input, output, previous output, and recurrence coefficients. 

   (10) 

 In (10), 𝑀 represents available memory in bytes, and  𝑝 is 
the number of input samples needed, as well as cycles necessary 
to reach steady output. The first term represents 5 floating point 
variables of 4 bytes each with 𝑝 copies for output calculation, 
while the second shows an array of integers of size 𝑝 for input 
samples. Substituting the Arduinos SRAM, 𝑝 is found to be 
approximately 363 cycles and samples, eliminating most of the 
filters in Table I. 

  (11) 

 Variables in (11) have the same meaning as in (10). Here, 
the first term represents 5 floats, the second term is an 
additional float for swapping values, and the last term is the 
same as in (10). Substituting 𝑀  yields 𝑝  of approximately 
3988, meaning iterative implementations have a higher cycle 
limit for realization. Usage of a large input array can be 
circumvented by performing calculations immediately after 
each measurement, though this might affect the mean sampling 
frequency and produce jitter. In this case, measurements should 
be carried out to characterize sampling frequency in the specific 
application. 
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 Fig. 4.   Second order filter output Fig. 5.   Third order filter output 

 

VI. CONCLUSIONS 
x The Arduino Mega 2560 is limited by default parameters of 

8929 Hz sampling frequency, a maximum of 4000 samples 
at a time, and 7 digit precision. This limits which signals can 
be characterized completely by the Arduino to 4465 Hz and 
requires usage of physical filters. Size of recurrence 
coefficients is limited through (8), and the number of 
samples allowed before reaching a steady output are limited 
to values under 4000 by the surrounding code that applies 
the filtering. 

x Due to constraints in the Arduino environment, filters must 
be selected based on design requirements. A smoother 
response is obtained by using lower cut-off frequencies, 
while a steady output is achieved with less memory at 
higher frequencies. At the same time, memory usage can be 
decreased by increasing the number of poles in filters; 
however, this reduces the size of recurrence coefficients and 
can thus be achieved only at higher cut-off frequencies. 
Selection of cut-off frequency and filter order is a function 
of available memory and allowed variations of output. 

x By means of (4-8) and use of transform tables or 
mathematical software, low-pass filters aimed at DC 
measurements can be designed for the Arduino with its 
default parameters. Values in Table I are ready for usage in 
Arduino code. Additionally, this procedure is applicable to 
different sampling frequencies, as is the case where the 
ADC prescalar is modified, by substitution of the 
appropriate sampling period. Determining realizable filters 
can be done through (8) in environments with double 
precision by substituting an appropriate margin in the 
inequality. Furthermore, filters other than low-pass can be 
designed in the same fashion for Arduino and other 
environments if corresponding expressions for 𝐻(𝑠)  are 
found. Usage of intuitive, physically realizable analog filters 

as basis for recursive digital filter is meant to facilitate 
intuitive design, along with simple test cases to determine if 
such a filter is realizable in Arduino. 

 

REFERENCES 
 

[1] Arduino. “Arduino MEGA 2560 & Genuino MEGA 2560,” Arduino. 
[Online]. Available: 
https://www.arduino.cc/en/Main/ArduinoBoardMega2560. [Accessed: 
May 1, 2016].   

[2] B. C. Kuo, Sistemas de Control Digital [Digital Control Systems]. 
Mexico: Grupo Editorial Patria, 2011. 

[3] Atmel Corportaion (2014, Feb.). Atmel ATmega640/V-1280/V-1281/V-
2560/V-2561/V: 8-bit Atmel Microcontroller with 16/32/64KB In-
System Programmable Flash, pp. 268-288. [Online]. Available: 
http://www.atmel.com/devices/atmega2560.aspx. [Accessed: May 2, 
2016]. 

[4] Riva (2015, Jun. 2). Microcontroller I/O & ADC Benchmarks. [Forum]. 
Available: http://forum.arduino.cc/index.php?topic=326944.0. 
[Accessed: May 2, 2016]. 

[5] S. W. Smith, “The z-Transform”, in The Scientist and Engineer’s Guide 
to Digital Signal Processing, pp. 605-630. [Online]. Available: 
http://www.dspguide.com/ch33.htm. [Accessed: May 7, 2016]. 

[6] J. Karki, “Active Low-Pass Filter Design”, Texas Instruments 
Application Report, pp. 9-10, Sep. 2012. [Online]. Available: 
http://www.ti.com/lit/an/sloa049b/sloa049b.pdf. [Accessed: May 6, 
2016]. 

[7] Arduino. “Float,” Arduino. [Online]. Available: 
https://www.arduino.cc/en/Reference/Float. [Accessed: May 20, 2016]. 

 
[8] Arduino. “Double,” Arduino. [Online]. Available: 

https://www.arduino.cc/en/Reference/Double. [Accessed: May 20, 
2016].   

[9] Arduino. “Memory,” Arduino. [Online]. Available: 
https://www.arduino.cc/en/Tutorial/Memory. [Accessed: May 23, 2016].   

[10] Arduino. “Int,” Arduino. [Online]. Available: 
https://www.arduino.cc/en/Reference/Int. [Accessed: May 20, 2016].   

 

0

10

20

30

40

50

1 101 201 301 401 501 601 701 801 901

D
ig

ita
liz

ed
 V

ol
ta

ge

Samples

10 Hz 20 Hz 30 Hz 40 Hz

0
10
20
30
40
50
60

1 101 201 301 401 501 601 701 801 901

D
ig

ita
liz

ed
 V

ol
ta

ge

Samples

40 Hz (NC) 40 Hz (WC)


