
Universidad Tecnológica Centroamericana (UNITEC), Honduras

Analog-based Digital Low-Pass Filter Realization for
Mains Noise Using Arduino Mega 2560 Default

Parameters

Eduardo J. Pérez, Alejandro J. Del Cid, Pat H. Rodríguez
Department of Telecommunications Engineering

Universidad Tecnológica Centroamericana (UNITEC), Honduras

Abstract—In environments requiring remote monitoring,

distance between microcontrollers and sensors leads to noisy
measurements, particularly mains power noise. Noise mitigation
in DC measurements can be achieved through digital low-pass
filtering at code level. Design and performance of such filters
depends of parameters such as sampling frequency, precision, and
available memory, meaning the Arduino has specific design
constraints. Specifications of clock speed, floating point precision
and memory were determined, allowing the design of recursive
filters based on analog parallels. High order filters were deemed
unrealizable at low cut-off frequencies due to precision, whereas
fewer poles required excessive memory, due to which designers
must determine allowed variations and memory parameters
during implementation. The procedure followed can be
generalized to different frequency, response, precision and
memory constraints.

Keywords— Arduino Mega 2560, Digital Filter, Recurrence
Coefficients, Sampling Frequency, Floating Point Precision,
Memory.

I. INTRODUCTION
Remote monitoring may be a necessity in environments

where limited access to microcontrollers requires the definition
of a reduced amount of control units, such as hobbyist projects.
In these cases, the distance between the microcontroller and the
measurement point has an impact on the measurements when
covering the span with electrical conductors. The conductor
length increases susceptibility to noise, particularly to the
ubiquitous mains power noise. The result is a superposition of
the desired signal with AC components of varied frequencies.
This compels designers to implement filters; however, the signal
under measurement may have a frequency similar to that of the
noise source, meaning that filtering must be implemented
through software in order to mitigate noise selectively. This
introduces new constraints that depend on the microcontroller
involved in the system.

A particular case is that of the Arduino Mega 2560, which
allows interaction with an ATmega2560 microcontroller
through a proprietary interactive development environment and
C++ coding [1]. When dealing with analog DC measurements,
signal filtering can be achieved through digital low-pass filters
at code level by processing discrete data values collected by the
microprocessor. Such filters can be designed through different
methods, one of which parts from analog circuitry with desirable

properties. The filtering process is then limited by the clock
speed, precision, and memory specifications of the onboard
processor, providing specific parameters for digital filter design
involving the Arduino Mega 2560.

II. OBJECTIVES

A. General Objective
• To study the realizability of analog-based digital low-pass

filters intended for mains noise mitigation in the Arduino Mega
2560

B. Specific Objectives
• To determine the design constraints involved in filter design

for the Arduino Mega 2560

• To compare the results of different order and cut-off
frequency filters in terms of required memory and output
variations

• To provide a replicable and modifiable procedure for
designing and evaluating low-pass digital filters

III. METHODOLOGY
Measurements were taken using: Arduino Mega 2560

(henceforth, Arduino), PCE-SDS1022DL Oscilloscope,
N1996A Spectrum Analyzer, 1µF Capacitors. The experimental
setup was carried out at the “Universidad Tecnológica
Centroamericana” (UNITEC) Networks Lab, consisting of a
75.6 m unshielded twisted pair cable with 14 connector-socket
pairs folded into 2 loops, interconnecting the Arduino and a
sensor with an output of voltage of 0.21 V. The setup is show in
Fig. 1. Calculations and preliminary simulations were carried
out in Matlab.

The sampling period of the Arduino was determined
theoretically by studying the ATmega2560 manual, and
corroborated through benchmarks found in the Arduino forums.
For the specific Arduino used, the mean sampling period was
determined. To reduce probe effect introduced by code
commands other than sampling, a single sample was defined as
the time taken to measure 960 values. A pilot test of 100 such
samples yielded a standard deviation of 0.009 ms.

Fig. 1. Experimental Setup in Networks Lab caption

Choosing a margin of error of 0.001 ms, the mean sampling
period was determined with 99% certainty.

Digital filter design was centered on the calculation of
recurrence coefficients. The process involved analog filter
design through Laplace transform, inverse Laplace transform to
obtain the time domain transfer function, discretization of the
time domain based on sampling period, Z transform and gain
normalization. Subsequently, the resulting filters were simulated
on a sample noisy signal prior to implementation in the
experimental setup.

IV. DESCRIPTION
When measuring analog DC signals with the Arduino, the

goal is to obtain significant information from the values
collected. This becomes difficult when noise comes into play, as
is the case of sensors connected to a microcontroller by means
of a span of conductor. A setup consisting of a 75.6 m unshielded
twisted pair connecting an Arduino and a sensor with a 0.21 V
allows the measurement of the superposed noise signal. A noise
of 30 mV peak maximum is present in the experimental setup,
representing an error of ± 14% in the measurement. By
inspection, the shape of the noise follows that of a 60 Hz
sinusoid, as expected from the spectrum analyzer output of -10
dBm at 60 Hz in the Networks Lab, as shown in Fig. 2. The
information of interest can be obtained through filtering.

Fig. 2. Experimental Setup in Networks Lab caption

The sampling theorem states that the maximum frequency
that can be unambiguously characterized based on the sampled
values of a signal depends on the sampling frequency used [2].
For the Arduino, the sampling frequency is dictated by a
prescalar in the Analog to Digital Converter (ADC) in the
ATmega2560 with a default value of 128 [3]. The ADC is
specified to take 13 clock cycles for successive approximation
in the default single conversion mode, plus a minimum of 1
clock cycle before commencing the next measurement [3]. From
[1], [2], and [3], the Arduino follows that

 . (1)

 From (1), the Arduino sampling frequency is approximately
8929 Hz, characterizing signals up to a maximum frequency 𝑓𝑚
of approximately 4465 Hz. This corresponds to the findings in
[4], where the sampling period is measured as 112.01 µs. For
the particular Arduino used, the mean period for measuring 960
samples is 107.528 ms with 99% certainty, equivalent to 8928
Hz with an error of 0.011% with respect to the theoretical value,
due to which a frequency of 8929 Hz is used.

 With (1) in mind, a 1µF capacitor is placed parallel to the
ADC input. This value is determined by defining the desired
reactance at the frequency of interest; in this case, finding the
capacitor that provides a reactance with a magnitude close to 30
Ω at 4465 Hz, decoupling signals at this frequency and higher,
which satisfies (1) and attenuates other AC signals under
4465Hz. Samples collected by the Arduino at this point
represent an unambiguous signal that can be treated with digital
filters.

 Digital filters can be implemented by programming their
characteristic difference equation [5]:

 (2)

 Values 𝑎𝑖 and 𝑏𝑗 are the recurrence coefficients of the
filter, assigning a weight to the components 𝑥[𝑛 − 𝑖] and 𝑦[𝑛 −
𝑗] , which represent the value of the input and output,
respectively, 𝑖 and 𝑗 samples ago, where 𝑖 = 0,1,2, … and 𝑗 =
1,2,3, … . This equation accounts only for current and past
values of 𝑥[𝑛] and 𝑦[𝑛], due to which filters of this form are
causal and physically realizable [2]. Design of causal filters
revolves around the calculation of adequate coefficients,
producing a desired behavior when applied to a discrete time
signal, such as ADC measurements in the Arduino.

Recurrence coefficients can be taken from the z transform of
the filter’s transfer function, which is equivalent to taking the z
transform of both sides of (2) and solving for the transformed
output divided by the transformed input [5]:

 (3)

-60
-30

0
30
60

0.00 2.00 4.00 6.00 8.00 10.00

m
V

ms

-100

-75

-50

-25

0

0 60 120 180 240 300 360

dB
m

Hz

In (3), 𝑌[𝑧] and 𝑋[𝑧] are the respective z transforms of the
input and output, and coefficients 𝑎𝑖 and 𝑏𝑗 are the same
recurrence coefficients as in (2). Since (2) and (3) are causal, a
physical filter can be made to have the same transfer
function 𝐻[𝑧] = 𝑌[𝑧]

𝑋[𝑧]. This transfer function can be obtained by
taking the Laplace transform of a time domain transfer function
ℎ(𝑡) after it has been sampled, represented by ℎ∗(𝑡), yielding
𝐻∗(𝑠) [2]. The transfer function 𝐻[𝑧] can be obtained from
𝐻∗(𝑠) through the substitution 𝑧 = 𝑒𝑠𝑇 [2] with prior
knowledge of sampling period 𝑇.

A continuous system can be analyzed through the Laplace
transform to obtain a transfer function 𝐻(𝑠) and a
corresponding ℎ(𝑡) . This time domain function can be
discretized by taking samples every 𝑇 seconds, from which
ℎ∗(𝑡) and 𝐻[𝑧] can be found. This procedure allows the
calculation of recurrence coefficients so that (2) is a discrete
representation of a system with transfer function 𝐻(𝑠), shifting
the focus onto common analog filters.

 It is desired that the output of the filter remains the same as
the input for the frequency band of interest; in this case,
frequencies under 60 Hz. A Butterworth response filter achieves
a maximally flat gain below the cut-off frequency [6], solving
the problem by using a unit gain; additionally, the topologies
selected as a basis for 𝐻(𝑠) are a simple RC combination for one
pole, a Sallen-Key topology for two poles, and a cascaded
combination of both for 3 poles, finding the appropriate gain
value for the two pole Sallen-Key Butterworth response in [6].
Transfer functions 𝐻(𝑠) for these low-pass analog filters are
found to be:

 (4)

 (5)

 (6)

 (7)

In these equations, index n in 𝐻𝑛(𝑠) denotes the number of

poles in the filter. This representation was derived with
simplicity of input into mathematical software in mind. The
symbol 𝛽 substitutes the product RC as the specific component
values are unimportant; rather, filter cut-off frequency 𝐹𝑐 is
emphasized.

Though any 1, 2 or 3 pole low-pass filter may be designed
through (4-7), care must be taken to ensure that 𝐹𝑐 < 4465 𝐻𝑧,
limit imposed by the Arduino’s default characteristics following
from (1). Sampling period 𝑇 must be fixed to 8929−1 s when
discretizing the continuous time transfer function ℎ(𝑡) obtained
from 𝐻(𝑠).

𝐻[𝑧] may be obtained by successive transformations
following the sequence 𝐻(𝑠) → ℎ(𝑡) → ℎ∗(𝑡) → 𝐻[𝑧] , or
directly 𝐻(𝑠) → 𝐻[𝑧] through software aid or by use of
transform tables. Once 𝐻[𝑧] is obtained, a few modifications
must be made. In order for the expression to match (3), the
numerator and denominator must be divided by the highest
power of the 𝑧 variable to produce negative exponents; they

must also be divided by the constant value in the denominator to
ensure a leading value of 1 followed by negative exponents of 𝑧.

The expected output of a recurrent filter built from (3) and
(2) should be equal to the input when the frequency is within the
range of interest. To ensure this, the filter’s gain must be
normalized. This procedure can be done by taking the
preliminary expression of the recurrent filter of form (2) and
enforcing 𝑥[𝑛 − 𝑖] = 1, 𝑦[𝑛 − 𝑗] = 𝐺, and 𝑦[𝑛] = 𝐺, and then
solving for 𝐺, where 𝐺 is the filter’s gain [5]. If 𝐺 ≠ 1, then 𝑎𝑖
must be substituted by 𝑎𝑖

𝐺
 [5]. Alternatively, to test whether the

filter is normalized, assume all inputs and outputs equal to 1. If
(2) holds true under this assumption, the filter is normalized;
otherwise, the previous procedure must be carried out.

Recursive filters intended for implementation on the
Arduino have constraints other than sampling frequency. The
floating point precision in Arduino uses 4 bytes (henceforth B)
and allows for up to 7 digits aside from exponents [7]. The
limitation comes from the lack of double precision variables,
meaning that variables declared as doubles have the same
characteristics as floats [8]. Filters with certain coefficient
combinations are subject to rounding error when coded into the
Arduino, whereas environments with higher precision will only
experience this in more extreme cases.

The final limitation present in the Arduino environment is
memory. Arduino boards using the ATmega2560 have 8 kB of
SRAM memory for variable storage [9]. A maximum of 4000
integers may be stored at a time, based on their size [10]; this
scenario is not realistic as other variables must be stored in usual
codes, limiting the available memory further. Recurrent filters
require different amounts of samples to settle into a steady state.
To reduce jitter and deviation from the mean clock speed of the
microcontroller, all samples should be taken consecutively and
stored prior to application of the filter, and because of this, filters
requiring large amounts of samples to reach their final state are
not realizable in the Arduino.

V. RESULTS
Fixing 𝑇 = 8929−1 s and using (4-7) along with

consecutive transformations 𝐻(𝑠) → ℎ(𝑡) → ℎ∗(𝑡) → 𝐻[𝑧] ,
recurrence coefficients were calculated for filters of first,
second and third order, with cut-off frequencies of 1 Hz, 10 Hz,
20 Hz, 30 Hz and 40 Hz. Many of these filters were determined
to be unrealizable in the Arduino mainly due to floating point
precision. Coefficients for realizable filters are shown in Table
I rounded to 6 decimal places; an explanation for this rounding
is provided below. Notation xi and yj in Table I corresponds to
𝑥[𝑛 − 𝑖] and 𝑦[𝑛 − 𝑗].

To determine whether a filter can be realized or not in the
Arduino, the order of the coefficients must be examined. As
only 7 digits are allowed, coefficients that differ in magnitude
by several powers of 10 will be rounded to 0. The following
criterion can be used to evaluate the low-pass filters found:

 (8)

TABLE I. RECURRENCE COEFFICIENTS

Cut-off
Frequency 1 Pole 2 Poles 3 Poles

1 Hz 0.000703*x+0.999297*y1 NA NA
10 Hz 0.007012*x+0.992988*y1 0.000049*x1+1.99005*y1-0.990099*y2 NA
20 Hz 0.013975*x+0.986025*y1 0.000197*x1+1.980100*y1-0.980297*y2 NA
30 Hz 0.020889*x+0.979111*y1 0.000439*x1+1.970152*y1-0.970591*y2 NA

40 Hz 0.027755*x+0.972245*y1 0.000776*x1+1.960205*y1-0.960981*y2 0.000011*x1+0.000011*x2+2.93245*y1-
2.866781*y2+0.934309*y3

 In (8), 𝑏𝑚 is the recurrence coefficient with the largest
magnitude in the denominator of 𝐻[𝑧]. When (8) is satisfied, all
numerator coefficients will round to 0 and the filter cannot be
realized on Arduino. If the result is exactly equal to 7, care must
be taken to see whether the coefficients will round up or down.
When the result is less than 7, recurrence coefficients will be
nonzero, but normalization testing is necessary.

 The third order filter with cut-off frequency of 30 Hz is a
case of an unrealizable filter due to normalization. The
expression for the filter is:

 (9)

 Repeated attempts at normalization yield 1 ≠ 1.000001
and 1 ≠ 0.999999, oscillating about 1. This alters the output
by multiplying a gain different from 1, making it unrealizable
in Arduino. A special case can be made for modifying the
coefficients of 𝑥[𝑛 − 𝑖] arbitrarily to obtain a sum of 1, though
this would require analysis of the frequency response for any
modifications in the cut-off frequency of the filter.

 Implementation of filters in Table I yielded the results in
Fig. 3-5. There is a tradeoff between performance and order of
poles. Filters with more poles reach a steady output in fewer
samples and therefore require less memory; however, as shown
in Table I, more poles leads to smaller recurrence coefficients
in the numerator of 𝐻[𝑧] . The size of these coefficients
increases with the cut-off frequency, so higher order filters are
realizable at higher cut-off frequencies. Resulting oscillations
are not evident in Fig. 3-5, due to which simulation with noisy
signals is advised. The utility of a bypass capacitor to limit the
frequency of signals prior to sampling is shown in Fig. 5.

Fig. 3. First order filter output

 The suggested implementation of these filters is iterative
rather than recursive. The motivation is that recursion elicits
greater memory usage by creating copies of variables involved
in calculations; in contrast, iterative implementations can be
realized by means of a single swap variable. In the case of the
analog-based low-pass filters discussed, a loose upper bound
for realization can be found based on filters requiring the fewest
variables, corresponding to first order. These filters require 2
recurrence coefficients, the present input, a previous output,
and a number of input samples to be cycled through in order to
obtain a steady output. All input measurements are stored first
as integers and are casted to floats during application, meaning
that an array of integer inputs is needed along with 5 floats for
input, output, previous output, and recurrence coefficients.

 (10)

 In (10), 𝑀 represents available memory in bytes, and 𝑝 is
the number of input samples needed, as well as cycles necessary
to reach steady output. The first term represents 5 floating point
variables of 4 bytes each with 𝑝 copies for output calculation,
while the second shows an array of integers of size 𝑝 for input
samples. Substituting the Arduinos SRAM, 𝑝 is found to be
approximately 363 cycles and samples, eliminating most of the
filters in Table I.

 (11)

 Variables in (11) have the same meaning as in (10). Here,
the first term represents 5 floats, the second term is an
additional float for swapping values, and the last term is the
same as in (10). Substituting 𝑀 yields 𝑝 of approximately
3988, meaning iterative implementations have a higher cycle
limit for realization. Usage of a large input array can be
circumvented by performing calculations immediately after
each measurement, though this might affect the mean sampling
frequency and produce jitter. In this case, measurements should
be carried out to characterize sampling frequency in the specific
application.

0

10

20

30

40

50

1 101 201 301 401 501 601 701 801 901

D
ig

ita
liz

ed
 V

ol
ta

ge

Samples

1 Hz 10 Hz 20 Hz 30 Hz 40 Hz

 Fig. 4. Second order filter output Fig. 5. Third order filter output

VI. CONCLUSIONS
x The Arduino Mega 2560 is limited by default parameters of

8929 Hz sampling frequency, a maximum of 4000 samples
at a time, and 7 digit precision. This limits which signals can
be characterized completely by the Arduino to 4465 Hz and
requires usage of physical filters. Size of recurrence
coefficients is limited through (8), and the number of
samples allowed before reaching a steady output are limited
to values under 4000 by the surrounding code that applies
the filtering.

x Due to constraints in the Arduino environment, filters must
be selected based on design requirements. A smoother
response is obtained by using lower cut-off frequencies,
while a steady output is achieved with less memory at
higher frequencies. At the same time, memory usage can be
decreased by increasing the number of poles in filters;
however, this reduces the size of recurrence coefficients and
can thus be achieved only at higher cut-off frequencies.
Selection of cut-off frequency and filter order is a function
of available memory and allowed variations of output.

x By means of (4-8) and use of transform tables or
mathematical software, low-pass filters aimed at DC
measurements can be designed for the Arduino with its
default parameters. Values in Table I are ready for usage in
Arduino code. Additionally, this procedure is applicable to
different sampling frequencies, as is the case where the
ADC prescalar is modified, by substitution of the
appropriate sampling period. Determining realizable filters
can be done through (8) in environments with double
precision by substituting an appropriate margin in the
inequality. Furthermore, filters other than low-pass can be
designed in the same fashion for Arduino and other
environments if corresponding expressions for 𝐻(𝑠) are
found. Usage of intuitive, physically realizable analog filters

as basis for recursive digital filter is meant to facilitate
intuitive design, along with simple test cases to determine if
such a filter is realizable in Arduino.

REFERENCES

[1] Arduino. “Arduino MEGA 2560 & Genuino MEGA 2560,” Arduino.
[Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardMega2560. [Accessed:
May 1, 2016].

[2] B. C. Kuo, Sistemas de Control Digital [Digital Control Systems].
Mexico: Grupo Editorial Patria, 2011.

[3] Atmel Corportaion (2014, Feb.). Atmel ATmega640/V-1280/V-1281/V-
2560/V-2561/V: 8-bit Atmel Microcontroller with 16/32/64KB In-
System Programmable Flash, pp. 268-288. [Online]. Available:
http://www.atmel.com/devices/atmega2560.aspx. [Accessed: May 2,
2016].

[4] Riva (2015, Jun. 2). Microcontroller I/O & ADC Benchmarks. [Forum].
Available: http://forum.arduino.cc/index.php?topic=326944.0.
[Accessed: May 2, 2016].

[5] S. W. Smith, “The z-Transform”, in The Scientist and Engineer’s Guide
to Digital Signal Processing, pp. 605-630. [Online]. Available:
http://www.dspguide.com/ch33.htm. [Accessed: May 7, 2016].

[6] J. Karki, “Active Low-Pass Filter Design”, Texas Instruments
Application Report, pp. 9-10, Sep. 2012. [Online]. Available:
http://www.ti.com/lit/an/sloa049b/sloa049b.pdf. [Accessed: May 6,
2016].

[7] Arduino. “Float,” Arduino. [Online]. Available:
https://www.arduino.cc/en/Reference/Float. [Accessed: May 20, 2016].

[8] Arduino. “Double,” Arduino. [Online]. Available:

https://www.arduino.cc/en/Reference/Double. [Accessed: May 20,
2016].

[9] Arduino. “Memory,” Arduino. [Online]. Available:
https://www.arduino.cc/en/Tutorial/Memory. [Accessed: May 23, 2016].

[10] Arduino. “Int,” Arduino. [Online]. Available:
https://www.arduino.cc/en/Reference/Int. [Accessed: May 20, 2016].

0

10

20

30

40

50

1 101 201 301 401 501 601 701 801 901

D
ig

ita
liz

ed
 V

ol
ta

ge

Samples

10 Hz 20 Hz 30 Hz 40 Hz

0
10
20
30
40
50
60

1 101 201 301 401 501 601 701 801 901

D
ig

ita
liz

ed
 V

ol
ta

ge

Samples

40 Hz (NC) 40 Hz (WC)

